“ANTIAGING” EFFECTS OF EXERCISE ON BIOLOGICAL SYSTEMS: A BRIEF NARRATIVE REVIEW

JÚLIO BENVENUTTI BUENO DE CAMARGO, RAFAEL SAKAI ZARONI, TIAGO VOLPI BRAZ, MOISÉS DIEGO GERMANO, JHENIPHER MONIKY ROSOLEM, ANTONIO CARLOS TAVARES JUNIOR, THIAGO PIRES DE OLIVEIRA, CHARLES RICARDO LOPES, FELIPE ALVES BRIGATTO

Resumo


Aging is characterized by a progressive decline in function and morphological aspects of biological tissues, with especial regards to cardiovascular and musculoskeletal systems. In this sense, exercise has been shown to strongly counteract these aging-induced detrimental effects. Endurance exercise (EE) has been shown to reduce the rate of decline of factors related to cardiorespiratory fitness. In addition, the adoption of resistance training (RT) may also induce relevant adaptations, especially related to increased muscle strength and power levels, that have shown to positively influence functional aspects as improved balance and reduced risk of falls in the elderly population.  Then, the aim of the present study is to briefly review the exercise literature regarding its mechanisms that could potentially present “antiaging” effects.

Palavras-chave


elderly; training; endurance; muscle strength.

Referências


World Health Organization. The World Report on Ageing and Health. Published online 2015:1-246.

Green M. Ageing and disease. Clin Endocrinol Metab. 1981;10(1):207-228. doi:10.1016/S0300-595X(81)80046-1

Hayflick L. Theories of biological aging. Exp Gerontol. 1985;20(3-4):145-159. doi:10.1016/0531-5565(85)90032-4

Weyand CM, Goronzy JJ. Aging of the immune system: Mechanisms and therapeutic targets. Ann Am Thorac Soc. 2016;13(December):S422-S428. doi:10.1513/AnnalsATS.201602-095AW

Nagel JE, Chrest FJ, Adler WH. Enumeration of T lymphocyte subsets by monoclonal antibodies in young and aged humans. J Immunol. 1981;127(5):2086-2088.

Manor B, Lipsitz LA. Physiologic complexity and aging: Implications for physical function and rehabilitation. Prog Neuro-Psychopharmacology Biol Psychiatry. 2013;45(1):287-293. doi:10.1016/j.pnpbp.2012.08.020

Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483-495. doi:10.1016/j.cell.2005.02.001

Brieger K, Schiavone S, Miller FJ, Krause KH. Reactive oxygen species: From health to disease. Swiss Med Wkly. 2012;142(August):1-14. doi:10.4414/smw.2012.13659

Sohal RS, Sohal BH. Hydrogen peroxide release by mitochondria increases during aging. Mech Ageing Dev. 1991;57(2):187-202. doi:10.1016/0047-6374(91)90034-W

Fukui H, Moraes CT. The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci. 2008;31(5):251-256. doi:10.1016/j.tins.2008.02.008

Blagosklonny M V. Aging: ROS or TOR. Cell Cycle. 2008;7(21):3344-3354. doi:10.4161/cc.7.21.6965

Buffenstein R, Edrey YH, Yang T, Mele J. The oxidative stress theory of aging: Embattled or invincible? Insights from non-traditional model organisms. Age (Omaha). 2008;30(2-3):99-109. doi:10.1007/s11357-008-9058-z

Doonan R, McElwee JJ, Matthijssens F, et al. Against the oxidative damage theory of aging: Superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 2008;22(23):3236-3241. doi:10.1101/gad.504808

Perls T, Kunkel L, Puca A. The genetics of aging. Curr Opin Genet Dev. 2002;12(3):362-369. doi:10.1016/S0959-437X(02)00310-6

da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging—Theories, mechanisms and future prospects. Ageing Res Rev. 2016;29(1):90-112. doi:10.1016/j.arr.2016.06.005

Rivera AM, Pels AE, Sady SP, Sady MA, Cullinane EM, Thompson PD. Physiological factors associated with the lower maximal oxygen consumption of master runners. J Appl Physiol. 1989;66(2):949-954. doi:10.1152/jappl.1989.66.2.949

Fleg JL, Morrell CH, Bos AG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112(5):674-682. doi:10.1161/CIRCULATIONAHA.105.545459

Shephard RJ. Maximal oxygen intake and independence in old age. Br J Sports Med. 2009;43(5):342-346. doi:10.1136/bjsm.2007.044800

Proctor DN, Joyner MJ. Skeletal muscle mass and the reduction of VO2(max) in trained older subjects. J Appl Physiol. 1997;82(5):1411-1415. doi:10.1152/jappl.1997.82.5.1411

Toth MJ, Gardner AW, Ades PA, Poehlman ET. Contribution of body composition and physical activity to age-related decline in peak VO2 in men and women. J Appl Physiol. 1994;77(2):647-652. doi:10.1152/jappl.1994.77.2.647

Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol. 2000;89(1):81-88. doi:10.1152/jappl.2000.89.1.81

Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy?. Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84(2-3):275-294. doi:10.1016/0022-510X(88)90132-3

Lexell J, Downham D, Sjöström M. Distribution of different fibre types in human skeletal muscles. J Neurol Sci. 1986;72(2-3):211-222. doi:10.1016/0022-510x(86)90009-2

LEXELL J, HENRIKSSON LARSÉN K, SJÖSTRÖM M. Distribution of different fibre types in human skeletal muscles 2. A study of cross sections of whole m. vastus lateralis. Acta Physiol Scand. 1983;117(1):115-122. doi:10.1111/j.1748-1716.1983.tb07185.x

Doherty TJ, Vandervoort AA, Taylor AW, Brown WF. Effects of motor unit losses on strength in older men and women. J Appl Physiol. 1993;74(2):868-874. doi:10.1152/jappl.1993.74.2.868

Evans WJ. Effects of exercise on senescent muscle. Clin Orthop Relat Res. 2002;(403 SUPPL.):211-220. doi:10.1097/00003086-200210001-00025

Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi:10.1093/ageing/afy169

Aniansson A, Sperling L, Rundgren A, Lehnberg E. Muscle function in 75-year-old men and women. A longitudinal study. Scand J Rehabil Med Suppl. 1983;9:92-102.

Borges O. Isometric and isokinetic knee extension and flexion torque in men and women aged 20-70. Scand J Rehabil Med. 1989;21(1):45-53.

Suetta C, Aagaard P, Rosted A, et al. Training-induced changes in muscle CSA, muscle strength, EMG, and rate of force development in elderly subjects after long-term unilateral disuse. J Appl Physiol. 2004;97(5):1954-1961. doi:10.1152/japplphysiol.01307.2003

Green DJ, Maiorana A, O’Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004;561(1):1-25. doi:10.1113/jphysiol.2004.068197

Gielen S, Sandri M, Erbs S, Adams V. Exercise-Induced Modulation of Endothelial Nitric Oxide Production. Curr Pharm Biotechnol. 2011;12(9):1375-1384. doi:10.2174/138920111798281063

Butcher LR, Thomas A, Backx K, Roberts A, Webb R, Morris K. Low-intensity exercise exerts beneficial effects on plasma lipids via pparγ. Med Sci Sports Exerc. 2008;40(7):1263-1270. doi:10.1249/MSS.0b013e31816c091d

Walsh JH, Yong G, Cheetham C, et al. Effects of exercise training on conduit and resistance vessel function in treated and untreated hypercholesterolaemic subjects. Eur Heart J. 2003;24(18):1681-1689. doi:10.1016/S0195-668X(03)00384-1

Monahan KD, Dinenno FA, Tanaka H, Clevenger CM, Desouza CA, Seals DR. Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensitivity in healthy men. J Physiol. 2000;529(1):263-271. doi:10.1111/j.1469-7793.2000.00263.x

Routledge FS, Campbell TS, McFetridge-Durdle JA, Bacon SL. Improvements in heart rate variability with exercise therapy. Can J Cardiol. 2010;26(6):303-312. doi:10.1016/S0828-282X(10)70395-0

Petrella RJ, Cunningham DA, Paterson DH. Effects of 5-Day Exercise Training in Elderly Subjects on Resting Left Ventricular Diastolic Function and VO 2 max. Can J Appl Physiol. 1997;22(1):37-47. doi:10.1139/h97-004

Wilson TM, Tanaka H. Meta-analysis of the age-associated decline in maximal aerobic capacity in men: Relation to training status. Am J Physiol - Hear Circ Physiol. 2000;278(3 47-3):829-834. doi:10.1152/ajpheart.2000.278.3.h829

Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol. 2006;101(2):531-544. doi:10.1152/japplphysiol.01474.2005

Nilwik R, Snijders T, Leenders M, et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol. 2013;48(5):492-498. doi:10.1016/j.exger.2013.02.012

Taylor NAS, Wilkinson JG. Exercise-Induced Skeletal Muscle Growth Hypertrophy or Hyperplasia? Sport Med An Int J Appl Med Sci Sport Exerc. 1986;3(3):190-200. doi:10.2165/00007256-198603030-00003

Moro T, Tinsley G, Bianco A, et al. High intensity interval resistance training (HIIRT) in older adults: Effects on body composition, strength, anabolic hormones and blood lipids. Exp Gerontol. 2017;98:91-98. doi:10.1016/j.exger.2017.08.015

Motalebi SA, Cheong LS, Iranagh JA, Mohammadi F. Effect of low-cost resistance training on lower-limb strength and balance in institutionalized seniors. Exp Aging Res. 2018;44(1):48-61. doi:10.1080/0361073X.2017.1398810

Daly M, Vidt ME, Eggebeen, JD, et al. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults. J Aging Phys Act. 2013;21(2):186-207. doi:10.1123/japa.21.2.186

Farinatti PTV, Geraldes AAR, Bottaro MF, Lima MVIC, Albuquerque RB, Fleck SJ. Effects of Different Resistance Training Frequencies on the Muscle Strength and Functional Performance of Active Women Older Than 60 Years. J Strength Cond Res. 2013;27(8):2225-2234. doi:10.1519/JSC.0b013e318278f0db

BICKEL CS, CROSS JM, BAMMAN MM. Exercise Dosing to Retain Resistance Training Adaptations in Young and Older Adults. Med Sci Sport Exerc. 2011;43(7):1177-1187. doi:10.1249/MSS.0b013e318207c15d

Petrella JK, Kim JS, Tuggle SC, Bamman MM. Contributions of force and velocity to improved power with progressive resistance training in young and older adults. Eur J Appl Physiol. 2007;99(4):343-351. doi:10.1007/s00421-006-0353-z

Stec MJ, Thalacker-Mercer A, Mayhew DL, et al. Randomized, four-arm, dose-response clinical trial to optimize resistance exercise training for older adults with age-related muscle atrophy. Exp Gerontol. 2017;99:98-109. doi:10.1016/j.exger.2017.09.018

Fokkenrood HJ, Bendermacher BL, Lauret GJ, Willigendael EM, Prins MH, Teijink JA. Supervised exercise therapy versus non-supervised exercise therapy for intermittent claudication. Cochrane Database Syst Rev. Published online August 2013. doi:10.1002/14651858.CD005263.pub3

Grosicki GJ, Standley RA, Murach KA, et al. Improved single muscle fiber quality in the oldest-old. J Appl Physiol. 2016;121(4):878-884. doi:10.1152/japplphysiol.00479.2016

Ensrud KE, Ewing SK, Taylor BC, et al. Frailty and Risk of Falls, Fracture, and Mortality in Older Women: The Study of Osteoporotic Fractures. Journals Gerontol Ser A Biol Sci Med Sci. 2007;62(7):744-751. doi:10.1093/gerona/62.7.744

Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA. 1990;263(22):3029-3034.

Frontera WR, Meredith CN, O’Reilly KP, Knuttgen HG, Evans WJ. Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol. 1988;64(3):1038-1044. doi:10.1152/jappl.1988.64.3.1038

Bassey EJ, Harries UJ. Normal values for handgrip strength in 920 men and women aged over 65 years, and longitudinal changes over 4 years in 620 survivors. Clin Sci. 1993;84(3):331-337. doi:10.1042/cs0840331

Rantanen T, Masaki K, Foley D, Izmirlian G, White L, Guralnik JM. Grip strength changes over 27 yr in Japanese-American men. J Appl Physiol. 1998;85(6):2047-2053. doi:10.1152/jappl.1998.85.6.2047

Klitgaard H, Mantoni M, Schiaffino S, et al. Function, morphology and protein expression of ageing skeletal muscle: A cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand. 1990;140(1):41-54. doi:10.1111/j.1748-1716.1990.tb08974.x

Melov S, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A. Resistance Exercise Reverses Aging in Human Skeletal Muscle. Wenner P, ed. PLoS One. 2007;2(5):e465. doi:10.1371/journal.pone.0000465

Izquierdo M, Aguado X, Gonzalez R, López JL, Häkkinen K. Maximal and explosive force production capacity and balance performance in men of different ages. Eur J Appl Physiol. 1999;79(3):260-267. doi:10.1007/s004210050504

Pearson SJ, Young A, Macaluso A, et al. Muscle function in elite master weightlifters. Med Sci Sport Exerc. 2002;34(7):1199-1206. doi:10.1097/00005768-200207000-00023

Barry BK, Warman GE, Carson RG. Age-related differences in rapid muscle activation after rate of force development training of the elbow flexors. Exp Brain Res. 2005;162(1):122-132. doi:10.1007/s00221-004-2127-3

Kamen G, Knight CA. Training-Related Adaptations in Motor Unit Discharge Rate in Young and Older Adults. Journals Gerontol Ser A Biol Sci Med Sci. 2004;59(12):1334-1338. doi:10.1093/gerona/59.12.1334

Häkkinen K, Kallinen M, Izquierdo M, et al. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol. 1998;84(4):1341-1349. doi:10.1152/jappl.1998.84.4.1341

Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M. Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports. 2010;20(1):49-64. doi:10.1111/j.1600-0838.2009.01084.x

Harridge SDR, Kryger A, Stensgaard A. Knee extensor strength, activation, and size in very elderly people following strength training. Muscle Nerve. 1999;22(7):831-839. doi:10.1002/(SICI)1097-4598(199907)22:7<831::AID-MUS4>3.0.CO;2-3

OBSERVAÇÃO: Os autores declaram não existir conflitos de interesse de qualquer natureza.


Texto completo: PDF

Apontamentos

  • Não há apontamentos.