Pedro Pugliesi Abdalla, Anderson dos Santos Carvalho, Nilo César Ramos, José Augusto Gonçalves Marini, Michael Duncan, Jorge Mota, André Pereira dos Santos, Ana Claudia Rossini Venturini, Dalmo Roberto Lopes Machado


Purpose: The accuracy and errors of prediction of equations that estimate energy expenditure are unknown to seniors with sarcopenia. This study assessed the precision of predictive equations to estimate energy needs of sarcopenic seniors. Methods: Ninety-four community-dwelling older adults (female: 66; mean age: 75.9[5.7]) were tested for body dimensions derived from DXA. Performance tests and diagnosis of sarcopenia were performed. The total energy expenditure (TEE) of sarcopenic seniors (n=10) was measured by accelerometry and compared with three anthropometric equations: DRIs, Escott-Stump with upper (Escott-Stumpupp) and low energy margin (Escott-Stumplow). Results: Except for height, all other variables of body dimensions of sarcopenic seniors were smaller than non-sarcopenic ones (p<0.05). The slightly lower TEE values in the Escott-Stumplow equation were not different from accelerometry (-53kcal; t=0.606; p=0.560) but were overestimated by the DRIs (+358kcal; t=-3.163; p=0.011) and Escott-Stumpupp (+240kcal; t=-5.817; p<0.001), confirmed due to lack of agreement (Bland-Altman) with measured TEE. Conclusion: Smaller body dimensions of sarcopenic seniors suggest that their energy needs should be estimated from specific resources. The TEE assessed by the Escott-Stumplow equation was similar to that measured by accelerometry and therefore may be a good alternative for sarcopenic seniors where direct measurement of TEE is not possible.


energy metabolism; frailty; anthropometry; aged; frail elderly


Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. Journal of Cachexia, Sarcopenia and Muscle. 2016;7(5):512-4. doi:10.1002/jcsm.12147.

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al. Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing. 2018;48(1):16-31. doi:10.1093/ageing/afy169.

Wu I, Lin CC, Hsiung CA, Wang CY, Wu CH, Chan DCD et al. Epidemiology of sarcopenia among community‐dwelling older adults in Taiwan: A pooled analysis for a broader adoption of sarcopenia assessments. Geriatrics & Gerontology International. 2014;14(S1):52-60.

Pinedo-Villanueva R, Westbury LD, Syddall HE, Sanchez-Santos MT, Dennison EM, Robinson SM et al. Health Care Costs Associated With Muscle Weakness: A UK Population-Based Estimate. 2019;104(2):137-44. doi:10.1007/s00223-018-0478-1.

Chien MY, Huang TY, Wu YT. Prevalence of Sarcopenia Estimated Using a Bioelectrical Impedance Analysis Prediction Equation in CommunityDwelling Elderly People in Taiwan. Journal of the American Geriatrics Society. 2008;56(9):1710-5.

Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. Journal of diabetes and metabolic disorders. 2017;16:21. doi:10.1186/s40200-017-0302-x.

Diz JBM, Leopoldino AAO, Moreira BdS, Henschke N, Dias RC, Pereira LSM et al. Prevalence of sarcopenia in older Brazilians: A systematic review and metaanalysis. Geriatrics & Gerontology International. 2017;17(1):5-16.

Frayn KN. Metabolic regulation: a human perspective. John Wiley & Sons; 2009.

Mendes-Netto RS, Burini RC. Efeito da oferta e do balanço de energia sobre o metabolismo Protéico (1980-1995). Nutrire. 2000;19(único):129-44.

Ravussin E, Bogardus C. Relationship of genetics, age, and physical fitness to daily energy expenditure and fuel utilization. Am J Clin Nutr. 1989;49(5 Suppl):968-75. doi:10.1093/ajcn/49.5.968.

Westerterp KR. Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects. Frontiers in physiology. 2013;4:90. doi:10.3389/fphys.2013.00090.

Heydenreich J, Kayser B, Schutz Y, Melzer K. Total Energy Expenditure, Energy Intake, and Body Composition in Endurance Athletes Across the Training Season: A Systematic Review. Sports medicine - open. 2017;3(1):8. doi:10.1186/s40798-017-0076-1.

Krumbiegel P. Assessment of body composition and total energy expenditure in humans using stable isotope techniques; IAEA Human Health Series No. 3. 2010.

Sparks SA, Orme D, Mc Naughton LR. The effect of carrying a portable respiratory gas analysis system on energy expenditure during incremental running. Appl Ergon. 2013;44(3):355-9. doi:10.1016/j.apergo.2012.09.005.

Dutra de Oliveira JE, Marchini JS. Ciências nutricionais: aprendendo a aprender. Ciências nutricionais: aprendendo a aprender. Sarvier; 2008.

Calabro M, Kim Y, Franke W, Stewart J, Welk G. Objective and subjective measurement of energy expenditure in older adults: a doubly labeled water study. European journal of clinical nutrition. 2015;69(7):850-5.

Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498-504.

Kleiber M. The Fire of Life. An Introduction to Animal Energetics. New York: Robert E. Krieger Publishing; 1975.

Organization WH. Global recommendations on physical activity for health. 2010.

Carvalho AdS. Habilidades motoras fundamentais e nível de atividade física de crianças: um estudo com escolares do ensino fundamental: Universidade de São Paulo; 2019.

Yamada Y, Hashii-Arishima Y, Yokoyama K, Itoi A, Adachi T, Kimura M. Validity of a triaxial accelerometer and simplified physical activity record in older adults aged 64–96 years: a doubly labeled water study. European journal of applied physiology. 2018;118(10):2133-46.

Rafamantanantsoa HH, Ebine N, Yoshioka M, Higuchi H, Yoshitake Y, Tanaka H et al. Validation of three alternative methods to measure total energy expenditure against the doubly labeled water method for older Japanese men. Journal of nutritional science and vitaminology. 2002;48(6):517-23.

Bunout D, Barrera G, Hirsch S, Jimenez T, de la Maza MP. Association between activity energy expenditure and peak oxygen consumption with sarcopenia. BMC geriatrics. 2018;18(1):298. doi:10.1186/s12877-018-0993-y.

Kruger HS, Havemann-Nel L, Ravyse C, Moss SJ, Tieland M. Physical Activity Energy Expenditure and Sarcopenia in Black South African Urban Women. Journal of physical activity & health. 2016;13(3):296-302. doi:10.1123/jpah.2015-0078.

Tannir H, Kreidieh D, Itani L, El Masri D, El Ghoch M. Reduction of Resting Energy Expenditure and Sarcopenic Obesity in Adults with Overweight and Obesity: A Brief Report. Current diabetes reviews. 2019. doi:10.2174/1573399815666191030092138.

Borrego CdCH, Lopes HCB, Soares MR, Barros VDa, Frangella VS. Causas da má nutrição, sarcopenia e fragilidade em idosos. Revista da Associação Brasileira de Nutrição-RASBRAN. 2012;4(1):54-8.

Itoi A, Yamada Y, Yokoyama K, Adachi T, Kimura M. Validity of predictive equations for resting metabolic rate in healthy older adults. Clinical nutrition ESPEN. 2017;22:64-70. doi:10.1016/j.clnesp.2017.08.010.

Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Journal of the American Dietetic Association. 2002;102(11):1621-30.

Escott-Stump S. Nutrition and diagnosis-related care. Lippincott Williams & Wilkins; 2008.

Fassini PG, Pfrimer K, Ferriolli E, Suen VM, Marchini JS, Das SK. Assessment of energy requirements in patients with short bowel syndrome by using the doubly labeled water method. Am J Clin Nutr. 2016;103(1):77-82. doi:10.3945/ajcn.115.122408.

Porter J, Nguo K, Collins J, Kellow N, Huggins CE, Gibson S et al. Total energy expenditure measured using doubly labeled water compared with estimated energy requirements in older adults (≥65 y): analysis of primary data. The American Journal of Clinical Nutrition. 2019;110(6):1353-61. doi:10.1093/ajcn/nqz200.

Mosteller RD. Simplified calculation of body-surface area. The New England journal of medicine. 1987;317(17):1098. doi:10.1056/nejm198710223171717.

Abdalla PP, Silva AM, Carvalho AdS, Venturini ACR, Alves TC, Santos APd et al. Validation of anthropometric models in the estimation of appendicular lean soft tissue in young athletes. Revista Brasileira de Cineantropometria & Desempenho Humano. 2017;19(5):10. doi:10.5007/1980-0037.2017v19n5p505.

Icaza MC, Albala C. Projeto SABE. Minimental State Examination (MMSE) del estudio de dementia en Chile: análisis estatístico Brasília: OPAS. 1999:1-18.

Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand Grip Strength: age and gender stratified normative data in a population-based study. BMC Research Notes. 2011;4(127):1-5.

Alexandre S, Duarte YA, Santos JL, Wong R, Lebrao ML. Prevalence and associated factors of sarcopenia among elderly in Brazil: findings from the SABE study. The Journal of Nutrition, Health & Aging. 2014;18(3):284-90. doi:10.1007/s12603-013-0413-0.

Lourenco R, Perez-Zepeda M, Gutierrez-Robledo L, Rodriguez Manas L, Garcia-Garcia F. Performance of the European Working Group on Sarcopenia in Older People algorithm in screening older adults for muscle mass assessment. Age and ageing. 2014;44(2):334-8. doi:10.1093/ageing/afu192.

Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. Journal of Applied Physiology. 2003;95(5):1851-60.

Sampaio RAC, Sampaio PYS, Castano LAA, Barbieri JF, Coelho HJJ, Arai H et al. Cutoff values for appendicular skeletal muscle mass and strength in relation to fear of falling among Brazilian older adults: cross-sectional study. Sao Paulo Medical Journal. 2017;135(5):434-43. doi:10.1590/1516-3180.2017.0049030517.

Gobbo LA, Dourado DAQS, Almeida MFd, Duarte YAdO, Lebrao ML, Marucci MdFN. Massa muscular de idosos do município de São Paulo-Estudo SABE: Saúde, Bem-estar e Envelhecimento. Revista Brasileira de Cineantropometria & Desempenho Humano. 2012;14(1):1-10.

Castro EAd, Lima LM, Cerqueira MS, Gobbi S, Doimo LA. Sarcopenia and cardiovascular risk in physically active adult and elderly women. Motriz: Revista de Educação Física. 2014;20:92-9.

Geib LTC, Cataldo Neto A, Wainberg R, Nunes ML. Sono e envelhecimento. Revista de Psiquiatria do Rio Grande do Sul. 2003;25:453-65.

Bohn L, Ramoa A, Silva G, Silva N, Abreu SM, Ribeiro F et al. Sedentary Behavior and Arterial Stiffness in Adults with and without Metabolic Syndrome. Int J Sports Med. 2017;38(5):396-401. doi:10.1055/s-0043-101676.

Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Medicine and science in sports and exercise. 1998;30(5):777-81. doi:10.1097/00005768-199805000-00021.

Harris JA, Benedict FG. A biometric study of human basal metabolism. Proceedings of the National Academy of Sciences. 1918;4(12):370-3.

Lipschitz DA. Screening for nutritional status in the elderly. Primary care. 1994;21(1):55-67.

Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (London, England). 1986;1(8476):307-10.

Kruizenga HM, Hofsteenge GH, Weijs PJ. Predicting resting energy expenditure in underweight, normal weight, overweight, and obese adult hospital patients. Nutrition & metabolism. 2016;13:85. doi:10.1186/s12986-016-0145-3.

OMS. Physical Activity and Older Adults. 2019. Accessed 01/02/2019 2019.

Catão MHCdV, Xavier AFC, Xavier AFC. O IMPACTO DAS ALTERAÇÕES DO SISTEMA ESTOMATOGNÁTICO NA NUTRIÇÃO DO IDOSO”. Revista de Atenção à Saúde (antiga Rev Bras Ciên Saúde). 2012;9(29).

Campos MTFdS, Monteiro JBR, Ornelas APRdC. Fatores que afetam o consumo alimentar e a nutrição do idoso Factors that affect the aged people food intake e a nutrição do idoso. Revista de Nutrição. 2000;13(3):157-65.

OBSERVAÇÃO: Os autores declaram não existir conflitos de interesse de qualquer natureza.

Texto completo: PDF


  • Não há apontamentos.