CELL DEATH AND ITS CONCEPT APPLIED IN GENERAL HEALTH AND MICRO-BIOLOGICAL ACTION: LITERATURE REVIEW

Gabriella Brandimarte Queiroz, João Lopes Neto, Augusto Foggiato, Douglas Fernandes Silva

Resumo


Cell death is an essential biological process for physiological growth and development. Therefore, this process has different types of cell death and the main three are: apoptosis, autophagy and necrosis. In addition, cell death is related to manifestations of various diseases and treatment of systemic diseases in the areas of general health, such as cancer and periodontitis, in addition to viruses. In this study, the importance of cell death for the organism and its relationship with various human diseases, such as the new coronavirus 2 respiratory syndrome (SARS-CoV-2), both in clinical manifestations and in possible treatments, such as tumor necrosis agents (anti -TNF), to improve the response rates of patients with inflammatory diseases or the importance of lymphocytic apoptosis, promoted by SARS-CoV-2 by increasing the expression of Fas. Through this study it was possible to identify the importance of cell death for the organism and how it can interfere in human diseases; thus, enable the biotechnological application in the development of specific drugs and therapies.


Palavras-chave


Apoptosis; necrosis; autophagy; Health;

Referências


Adams, J. M. and Cory, S. (1998) ‘The Bcl-2 protein family: Arbiters of cell survival’, Science, 281(5381), pp. 1322–1326. doi: 10.1126/science.281.5381.1322.

Agnello, M. et al. (2015) ‘The Role of Autophagy and Apoptosis During Embryo Development’, Cell Death - Autophagy, Apoptosis and Necrosis. doi: 10.5772/61765.

Alberts, B. (2017) Apoptose_Bruce Alberts - Biologia Molecular da Célula, 6a Edição.pdf.

Allan, L. A. and Clarke, P. R. (2009) ‘Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation’, FEBS Journal, 276(21), pp. 6063–6073. doi: 10.1111/j.1742-4658.2009.07330.x.

Anazetti, M. and Melo, P. (2007) ‘Morte Celular por Apoptose: uma visão bioquímica e molecular’, Metrocamp Pesquisa, 1(1), pp. 37–58.

Andreas Linkermann, M.D., and Douglas R. Green, P. . (2018) ‘Necroptosis’, Apoptosis and Beyond: The Many Ways Cells Die, pp. 99–128. doi: 10.1002/9781119432463.ch6.

Behar, S. M. and Briken, V. (2019) ‘Apoptosis inhibition by intracellular bacteria and its consequence on host immunity’, Current Opinion in Immunology. Elsevier Ltd, 60, pp. 103–110. doi: 10.1016/j.coi.2019.05.007.

Bergantini, A. P. F. et al. (2005) ‘Leucemia mielóide crônica e o sistema Fas-FasL’, Revista Brasileira de Hematologia e Hemoterapia, 27(2), pp. 120–125. doi: 10.1590/s1516-84842005000200012.

Billmeier, U. et al. (2016) ‘Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases’, World Journal of Gastroenterology, 22(42), pp. 9300–9313. doi: 10.3748/wjg.v22.i42.9300.

Brass, A. (1997) ‘An overview’, Biochemical Society Transactions, 25(3), pp. 451–465.

Carneiro, José; Junqueira, L. C. (2012) Biologia Celular e Molecular - 9a Ed. 2012. doi: 10.1007/s13398-014-0173-7.2.

Castro, S. A. et al. (2017) ‘Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils’, Cell Death and Disease. Nature Publishing Group, 8(3), pp. e2644-9. doi: 10.1038/cddis.2016.481.

chen, yongwen et al. (2020) ‘The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph Nodes’, medRxiv, 2, p. 2020.03.27.20045427. doi: 10.1101/2020.03.27.20045427.

Chen, Q., Kang, J. and Fu, C. (2018) ‘The independence of and associations among apoptosis, autophagy, and necrosis’, Signal Transduction and Targeted Therapy. Springer US, 3(1). doi: 10.1038/s41392-018-0018-5.

Chen, Yuting et al. (2019) ‘Mitochondrial abnormalities are involved in periodontal ligament fibroblast apoptosis induced by oxidative stress’, Biochemical and Biophysical Research Communications. Elsevier Ltd, 509(2), pp. 483–490. doi: 10.1016/j.bbrc.2018.12.143.

Cheng, V. C. C. et al. (2007) ‘Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection’, Clinical Microbiology Reviews, 20(4), pp. 660–694. doi: 10.1128/CMR.00023-07.

Danial, N. N. and Korsmeyer, S. J. (2004) ‘Cell Death: Critical Control Points’, Cell, 116(2), pp. 205–219. doi: 10.1016/S0092-8674(04)00046-7.

Degterev, A. et al. (2005) ‘Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury’, Nature Chemical Biology, 1(2), pp. 112–119. doi: 10.1038/nchembio711.

Dyah Listyarifah1,2, Ahmed Al-Samadi3, Abdelhakim Salem1,3, Ahmad Syaify4, Tuula Salo3,5, Taina Tervahartiala3, Daniel Grenier6, Dan C. Nordström7, Timo Sorsa3,8, M. A. (2016) ‘Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study’, International Journal of Laboratory Hematology, 38(1), pp. 42–49. doi: 10.1111/ijlh.12426.

Edinger, A. L. and Thompson, C. B. (2004) ‘Death by design: Apoptosis, necrosis and autophagy’, Current Opinion in Cell Biology, 16(6), pp. 663–669. doi: 10.1016/j.ceb.2004.09.011.

Fan, T. J. et al. (2005) ‘Caspase family proteases and apoptosis’, Acta Biochimica et Biophysica Sinica, 37(11), pp. 719–727. doi: 10.1111/j.1745-7270.2005.00108.x.

Fedson, D. S., Opal, S. M. and Rordam, O. M. (2020) ‘Hiding in Plain Sight: an Approach to Treating Patients with Severe COVID-19 Infection.’, mBio, 11(2), pp. 1–3. doi: 10.1128/mBio.00398-20.

Ferreira, C. da S. et al. (2011) ‘Melatonina: modulador de morte celular’, Revista da Associação Médica Brasileira, 56(6), pp. 715–718. doi: 10.1590/s0104-42302010000600024.

Festjens, N., Vanden Berghe, T. and Vandenabeele, P. (2006) ‘Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response’, Biochimica et Biophysica Acta - Bioenergetics, 1757(9–10), pp. 1371–1387. doi: 10.1016/j.bbabio.2006.06.014.

Finlay, D. et al. (2017) ‘Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins’, F1000Research, 6(May), p. 587. doi: 10.12688/f1000research.10625.1.

Galluzzi, L. et al. (2012) ‘Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012’, Cell Death and Differentiation, 19(1), pp. 107–120. doi: 10.1038/cdd.2011.96.

Garrido, C. and Kroemer, G. (2004) ‘Life’s smile, death’s grin: Vital functions of apoptosis-executing proteins’, Current Opinion in Cell Biology, 16(6), pp. 639–646. doi: 10.1016/j.ceb.2004.09.008.

Goma, G. (1979) Advances in Biochemical Engineering, Biochimie. doi: 10.1016/S0300-9084(79)80192-3.

Green, D. R. et al. (2009) ‘Immunogenic and tolerogenic cell death’, Nature Reviews Immunology, 9(5), pp. 353–363. doi: 10.1038/nri2545.

He, C. and Klionsky, D. J. (2009) ‘Regulation Mechanisms and Signaling Pathways of Autophagy’, Annual Review of Genetics, 43(1), pp. 67–93. doi: 10.1146/annurev-genet-102808-114910.

Hunter, C. A. and Jones, S. A. (2015) ‘IL-6 as a keystone cytokine in health and disease’, Nature Immunology. Nature Publishing Group, 16(5), pp. 448–457. doi: 10.1038/ni.3153.

Isaka, Y. et al. (2017) ‘Autophagy and Cancer’, Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, 11, pp. 237–244. doi: 10.1016/B978-0-12-805420-8.00011-1.

Ivana Grivicich, Andréa Regner, A. B. da R. (2007) ‘Morte Celular por Apoptose’, Revista Brasileira de Cancerologia, 53(3), pp. 335–343.

Jiang, M., Li, Z. and Zhu, G. (2019) ‘The role of autophagy in the pathogenesis of periodontal disease’, Oral Diseases, pp. 0–2. doi: 10.1111/odi.13045.

Juste, Y. R. and Cuervo, A. M. (2019) ‘Analysis of Chaperone-Mediated Autophagy’, 1880, pp. 703–727.

Kim-Campbell, N., Gomez, H. and Bayir, H. (2017) Cell Death Pathways: Apoptosis and Regulated Necrosis. Third Edit, Critical Care Nephrology: Third Edition. Third Edit. doi: 10.1016/B978-0-323-44942-7.00020-0.

Knight, T. et al. (2019) ‘A delicate balance – The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics’, Biochemical Pharmacology. Elsevier Inc., 162, pp. 250–261. doi: 10.1016/j.bcp.2019.01.015.

Koff, J. L., Ramachandiran, S. and Bernal-Mizrachi, L. (2015) ‘A time to kill: Targeting apoptosis in cancer’, International Journal of Molecular Sciences, 16(2), pp. 2942–2955. doi: 10.3390/ijms16022942.

Komaki, F. et al. (2017) ‘Outcome of pregnancy and neonatal complications with anti-tumor necrosis factor-α use in females with immune mediated diseases; a systematic review and meta-analysis’, Journal of Autoimmunity. Elsevier Ltd, 76, pp. 38–52. doi: 10.1016/j.jaut.2016.11.004.

Kroemer, G. et al. (2009) ‘Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death 2009’, Cell Death and Differentiation, 16(1), pp. 3–11. doi: 10.1038/cdd.2008.150.

Kroemer, G. (2015) ‘Autophagy : a druggable process th a t is deregulated in aging and hum an disease’, Journal of Clinical Investigation, 125(8), pp. 1–5. doi: 10.1172/JCI78652.oncogenesis.

V. Kumar, Jon Aster, A. A. (2016) Robbins - Patologia Básica. Elsevier Health Sciences Brazil.

Kusano, C. and Ferrari, B. (2000) ‘Apoptose: No Controle E Na Patogênese Das Doenças Apoptose: a Importância Da Maquinaria De Morte Celular No Controle E Na Patogênese Das Doenças Apoptosis: the Importance of Cell Death Machinery in Disease Control and Pathogenesis’, rev. Ciênc. Méd., 9(1), pp. 21–31.

Lalaoui, N. et al. (2015) ‘The molecular relationships between apoptosis, autophagy and necroptosis’, Seminars in Cell and Developmental Biology. Elsevier Ltd, 39, pp. 63–69. doi: 10.1016/j.semcdb.2015.02.003.

Levine, B. and Kroemer, G. (2008) ‘Autophagy in the pathogenesis of disease.’, Cell, 132(1), pp. 27–42. doi: 10.1016/j.cell.2007.12.018.

Levine, B. and Kroemer, G. (2019) ‘Biological Functions of Autophagy Genes: A Disease Perspective’, Cell. Elsevier Inc., 176(1–2), pp. 11–42. doi: 10.1016/j.cell.2018.09.048.

Levy, J. M. M. et al. (2018) ‘Autophagy : process and function’, 125(1), pp. 2861–2873. doi: 10.1101/gad.1599207.eralize.

Li, W. W., Li, J. and Bao, J. K. (2012) ‘Microautophagy: Lesser-known self-eating’, Cellular and Molecular Life Sciences, 69(7), pp. 1125–1136. doi: 10.1007/s00018-011-0865-5.

Li, Y., Tong, Z. and Ling, J. (2019) ‘Effect of the three Enterococcus faecalis strains on apoptosis in MC3T3 cells’, Oral Diseases, 25(1), pp. 309–318. doi: 10.1111/odi.12883.

Liu, Z. et al. (2020) ‘Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2’, Journal of Medical Virology, (February), pp. 1–7. doi: 10.1002/jmv.25726.

Lok, S. W. et al. (2019) ‘A phase Ib dose-escalation and expansion study of the BCL2 inhibitor venetoclax combined with tamoxifen in ER and BCL2– positive metastatic breast cancer’, Cancer Discovery, 9(3), pp. 354–369. doi: 10.1158/2159-8290.CD-18-1151.

Loreto, C. et al. (2015) ‘Apoptosis activation in human carious dentin. An immunohistochemical study’, European Journal of Histochemistry, 59(3). doi: 10.4081/ejh.2015.2513.

Lu, R. et al. (2020) ‘Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding’, The Lancet. Elsevier Ltd, 395(10224), pp. 565–574. doi: 10.1016/S0140-6736(20)30251-8.

Martin, D. D. O. et al. (2015) ‘Autophagy in Huntington disease and huntingtin in autophagy’, Trends in Neurosciences. Elsevier Ltd, 38(1), pp. 26–35. doi: 10.1016/j.tins.2014.09.003.

McIlwain, D. R., Berger, T. and Mak, T. W. (2013) ‘Caspase functions in cell death and disease’, Cold Spring Harbor Perspectives in Biology, 5(4), pp. 1–28. doi: 10.1101/cshperspect.a008656.

Mei, Y. et al. (2015) ‘Autophagy and oxidative stress in cardiovascular diseases’, Biochimica et Biophysica Acta - Molecular Basis of Disease. Elsevier B.V., 1852(2), pp. 243–251. doi: 10.1016/j.bbadis.2014.05.005.

Messner, B. et al. (2016) ‘Cadmium overkill: Autophagy, apoptosis and necrosis signalling in endothelial cells exposed to cadmium’, Cellular and Molecular Life Sciences, 73(8), pp. 1699–1713. doi: 10.1007/s00018-015-2094-9.

Micic, D. et al. (2019) ‘Risk of Cancer Recurrence Among Individuals Exposed to Antitumor Necrosis Factor Therapy’, Journal of Clinical Gastroenterology, 53(1), pp. e1–e11. doi: 10.1097/mcg.0000000000000865.

Mizushima, N. (2005) ‘The pleiotropic role of autophagy: From protein metabolism to bactericide’, Cell Death and Differentiation, 12, pp. 1535–1541. doi: 10.1038/sj.cdd.4401728.

Mortezavi, A. et al. (2019) ‘Inhibition of autophagy significantly increases the antitumor effect of Abiraterone in prostate cancer’, World Journal of Urology. Springer Berlin Heidelberg, 37(2), pp. 351–358. doi: 10.1007/s00345-018-2385-5.

Mowers, E. E., Sharifi, M. N. and Macleod, K. F. (2017) ‘Autophagy in cancer metastasis’, Oncogene, 36(12), pp. 1619–1630. doi: 10.1038/onc.2016.333.

Nagata, S. (2018) ‘Apoptosis and Clearance of Apoptotic Cells’, Annual Review of Immunology, 36(1). doi: 10.1146/annurev-immunol-042617-053010.

Olesen, C. M. et al. (2016) ‘Mechanisms behind efficacy of tumor necrosis factor inhibitors in inflammatory bowel diseases’, Pharmacology and Therapeutics, 159, pp. 110–119. doi: 10.1016/j.pharmthera.2016.01.001.

Peter, M. E. and Krammer, P. H. (2003) ‘The CD95(APO-1/Fas) DISC and beyond’, Cell Death and Differentiation, 10(1), pp. 26–35. doi: 10.1038/sj.cdd.4401186.

Pfeffer, C. M. and Singh, A. T. K. (2018) ‘Apoptosis: A target for anticancer therapy’, International Journal of Molecular Sciences, 19(2). doi: 10.3390/ijms19020448.

Rabiee, S. et al. (2019) ‘Autophagic, apoptotic, and necrotic cancer cell fates triggered by acidic pH microenvironment’, Journal of Cellular Physiology, 234(7), pp. 12061–12069. doi: 10.1002/jcp.27876.

Salvesen, G. S. and Dixit, V. M. (1999) ‘Caspase activation: The induced-proximity model’, Proceedings of the National Academy of Sciences, 96(20), pp. 10964–10967. doi: 10.1073/pnas.96.20.10964.

Shi, Y. et al. (2020) ‘COVID-19 infection: the perspectives on immune responses.’, Cell death and differentiation. Springer US. doi: 10.1038/s41418-020-0530-3.

Shiozaki, E. N., Chai, J. and Shi, Y. (2002) ‘Oligomerization and activation of caspase-9, induced by Apaf-1 CARD’, Proceedings of the National Academy of Sciences, 99(7), pp. 4197–4202. doi: 10.1073/pnas.072544399.

Singh, S. et al. (2018) ‘Obesity and response to anti-tumor necrosis factor-α agents in patients with select immune-mediated inflammatory diseases: A systematic review and meta-analysis’, PLoS ONE, 13(5), pp. 1–26. doi: 10.1371/journal.pone.0195123.

Song, B. et al. (2017) ‘Programmed cell death in periodontitis: recent advances and future perspectives’, Oral Diseases, 23(5), pp. 609–619. doi: 10.1111/odi.12574.

Strasser, A., Connor, L. O. and Dixit, V. M. (2000) ‘Poptosis ignaling’, Annual Review of Biochemistry, 69(0066-4154 LA-eng PT-Journal Article PT-Review PT-Review, Academic), pp. 217–45. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10966458.

Su, Z. et al. (2015) ‘Apoptosis, autophagy, necroptosis, and cancer metastasis’, Molecular Cancer, 14(1), pp. 1–14. doi: 10.1186/s12943-015-0321-5.

Tang, Y. et al. (2018) ‘1,25-dihydroxyvitamin-D3 promotes neutrophil apoptosis in periodontitis with type 2 diabetes mellitus patients via the p38/MAPK pathway’, Medicine (United States), 97(52). doi: 10.1097/MD.0000000000013903.

Taskan, M. M. et al. (2019) ‘Evaluation of the effect of oleuropein on alveolar bone loss, inflammation, and apoptosis in experimental periodontitis’, Journal of Periodontal Research, (March), pp. 1–9. doi: 10.1111/jre.12662.

Taylor, R. C., Cullen, S. P. and Martin, S. J. (2008) ‘Apoptosis: Controlled demolition at the cellular level’, Nature Reviews Molecular Cell Biology, 9(3), pp. 231–241. doi: 10.1038/nrm2312.

Tiwari, M. et al. (2015) ‘Apoptosis in mammalian oocytes: A review’, Apoptosis. Springer US, 20(8), pp. 1019–1025. doi: 10.1007/s10495-015-1136-y.

Villunger, A. et al. (2012) ‘Responses Mediated by BH3-Only Proteins Puma and Noxa’, 1036(2003), pp. 10–13. doi: 10.1126/science.1090072.

Wallach, D. et al. (1998) ‘Death-inducing functions of ligands of the tumor necrosis factor family: A Sanhedrin verdict’, Current Opinion in Immunology, 10(3), pp. 279–288. doi: 10.1016/S0952-7915(98)80166-0.

Wang, Y. and Tjandra, N. (2013) ‘Structural insights of tBid, the caspase-8-activated bid, and its BH 3 domain’, Journal of Biological Chemistry, 288(50), pp. 35840–35851. doi: 10.1074/jbc.M113.503680.

Yang, C. N. et al. (2019) ‘Simvastatin alleviates bone resorption in apical periodontitis possibly by inhibition of mitophagy-related osteoblast apoptosis’, International Endodontic Journal, 52(5), pp. 676–688. doi: 10.1111/iej.13055.

Zhang, K. et al. (2019) ‘Autophagy preserves the osteogenic ability of periodontal ligament stem cells under high glucose conditions in rats’, Archives of Oral Biology. Elsevier, 101(January), pp. 172–179. doi: 10.1016/j.archoralbio.2019.03.020.

Zimmermann, K. C. and Green, D. R. (2001) ‘How cells die: Apoptosis pathways’, Journal of Allergy and Clinical Immunology, 108(4 SUPPL.), pp. 0–4. doi: 10.1067/mai.2001.117819.


Texto completo: PDF

Apontamentos

  • Não há apontamentos.